Cluster Algebras of Finite Type and Positive Symmetrizable Matrices
نویسندگان
چکیده
The paper is motivated by an analogy between cluster algebras and Kac-Moody algebras: both theories share the same classification of finite type objects by familiar Cartan-Killing types. However the underlying combinatorics beyond the two classifications is different: roughly speaking, Kac-Moody algebras are associated with (symmetrizable) Cartan matrices, while cluster algebras correspond to skew-symmetrizable matrices. We study an interplay between the two classes of matrices, in particular, establishing a new criterion for deciding whether a given skew-symmetrizable matrix gives rise to a cluster algebra of finite type.
منابع مشابه
Se p 20 05 CLUSTER ALGEBRAS OF FINITE TYPE AND POSITIVE SYMMETRIZABLE MATRICES
The paper is motivated by an analogy between cluster algebras and Kac-Moody algebras: both theories share the same classification of finite type objects by familiar Cartan-Killing types. However the underlying combinatorics beyond the two classifications is different: roughly speaking, Kac-Moody algebras are associated with (symmetrizable) Cartan matrices, while cluster algebras correspond to s...
متن کامل2 00 4 Cluster Algebras of Finite Type and Positive Symmetrizable Matrices
The paper is motivated by an analogy between cluster algebras and Kac-Moody algebras: both theories share the same classification of finite type objects by familiar Cartan-Killing types. However the underlying combinatorics beyond the two classifications is different: roughly speaking, Kac-Moody algebras are associated with (symmetrizable) Cartan matrices, while cluster algebras correspond to s...
متن کاملN ov 2 00 4 CLUSTER ALGEBRAS OF FINITE TYPE AND POSITIVE SYMMETRIZABLE MATRICES
The paper is motivated by an analogy between cluster algebras and Kac-Moody algebras: both theories share the same classification of finite type objects by familiar Cartan-Killing types. However the underlying combinatorics beyond the two classifications is different: roughly speaking, Kac-Moody algebras are associated with (symmetrizable) Cartan matrices, while cluster algebras correspond to s...
متن کاملCluster Algebras and Semipositive Symmetrizable Matrices
Cluster algebras are a class of commutative rings introduced by Fomin and Zelevinsky. It is well-known that these algebras are closely related with different areas of mathematics. A particular analogy exists between combinatorial aspects of cluster algebras and Kac-Moody algebras: roughly speaking, cluster algebras are associated with skew-symmetrizable matrices while Kac-Moody algebras corresp...
متن کاملCluster Automorphisms and the Marked Exchange Graphs of Skew-Symmetrizable Cluster Algebras
Cluster automorphisms have been shown to have links to the mapping class groups of surfaces, maximal green sequences and to exchange graph automorphisms for skew-symmetric cluster algebras. In this paper we generalise these results to the skew-symmetrizable case by introducing a marking on the exchange graph. Many skew-symmetrizable matrices unfold to skew-symmetric matrices and we consider how...
متن کامل